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We study the magnetization of square and hexagonal graphene dots. It is shown that two classes of hexago-
nal dots have a second-order phase transition at a critical Hubbard energy U, whose value is similar to the one
in bulk graphene, albeit the dots do not have a density of states proportional to the absolute value of the energy,
relatively to the Dirac point. Furthermore, we show that a particular class of hexagonal dots, having zigzag
edges, does not exhibit zero-energy edge states. We also study the effect of uniaxial strain on the evolution of
the magnetization of square dots and find that the overall effect is an enhancement of magnetization with strain.
The enhancement can be as large as 100% for strain on the order of 20%. Additionally, stress induces a spatial
displacement of the magnetization over the dot, moving it from the zigzag to the armchair edges.
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I. INTRODUCTION

Nowadays, the terms wonder material and graphene
dreams1,2 frequently accompany the description of the un-
usual electronic,3–5 thermal,6 and mechanical properties of
graphene.7–10 One of the most promising graphene dreams is
its application to a new generation of nanoelectronic
devices.11 To that effect, a number of systems have already
been experimentally investigated, namely, single-electron
transistors,12 quantum interference devices,13 and graphene
dots.14,15 The presence of Coulomb oscillations in graphene
quantum dots was also identified by different groups.12,14,15

Theoretically, the first investigations in this context fo-
cused on the transport properties of short �and wide�
ribbons.16 For long graphene ribbons,17 it was shown that the
low-bias current flowing through the bulk of the ribbon is
very robust with respect to a variety of constriction geom-
etries and edge defects, a result also confirmed for disordered
armchair nanoribbons.18 As in the case of short ribbons,16

evanescent waves were seen to play an important role in the
electronic transport through graphene quantum dots.19 The
role of magnetic fields in the electronic levels of graphene
quantum dots has been investigated by several authors. Of
particular interest for transport properties is the fact that op-
tical properties can be tuned by the size and edge type of the
dot.20 The shape and symmetry21,22 of the dots also play an
important role on energy level statistics and charge density.
For the special case of triangular quantum dots,22 the exis-
tence of “ghost states” was revealed, when these dots have
armchair edges, whereas for triangular dots with zigzag
edges the well-known surface states are present. Of particu-
lar importance was the demonstration of large insensitivity of
the electronic structure to the edge roughness.22

The main motivation for research in graphene quantum
dots and ribbons is related to the need of producing a
graphene-based system with an energy gap, which is not
present in bulk graphene. This fact is a recognized shortcom-
ing of bulk graphene, in what concerns applications relying
on current electronic operation. Gaps can be induced by elec-
tronic quantum confinement in narrow armchair ribbons,23 a
result confirmed by ab initio calculations24 and
experimentally.25 First-principles calculations further show

that zigzag ribbons can support magnetic ground states
which leads to a gapped spectrum.24 Spin-polarized ground
states are also present in small graphene-derivative molecu-
lar systems.26 This finding opens a new line of research: the
study of spin-polarized ground states of graphene quantum
dots of different geometries. In both single24 and bilayer27

zigzag ribbons, it was found that opposite edges align anti-
ferromagnetically with the magnetization rapidly decaying
toward the bulk of the ribbon. Hartree-Fock �HF� calcula-
tions are specially suited for this type of study, since one can
study the effect of different values of the Coulomb interac-
tion on the magnetic structure. An interesting effect emerges
from such studies:27 graphene ribbons have no critical Hub-
bard interaction, U, and thus the HF ground state is always
magnetic. This result is at odds with the behavior of bulk
graphene28–31 and bilayer graphene.27,32,33 This richness of
different behaviors suggests studying the formation of mag-
netic ground states in graphene dots, a line a research we
carry on in this paper from an HF point of view.

Interest in magnetism of sp2 carbon systems was greatly
spurred by experiments with proton-irradiated graphite34 and
with the experimental evidence that the measured magnetism
might stem from �-orbital physics alone.35 Proton irradiation
induces spatially disordered vacancies in the system.36,37 The
magnetism found experimentally is supported theoretically
by Hartree-Fock and ab initio studies.38 Recent experimental
developments addressed the intrinsic ferromagnetism in
highly oriented pyrolytic graphite, originating from the natu-
rally occurring grain boundaries, where zigzag edges de-
velop and local magnetic moments are formed. Typical hys-
teretical curves of a ferromagnetic material are seen in a
temperature range from 5 K up to 300 K.39,40

Hence, disorder, such as those line defects studied re-
cently, is a possible route for ferromagnetism in carbon-
based materials. However, disorder is not a necessary condi-
tion for magnetism in sp2 systems. It is by now well
established theoretically that graphene systems with zigzag
edges can support magnetic moments and, in a system with
perfect edges, this leads to magnetic ground states. An argu-
ment widely used against this result is based on the fact that
the atoms at the edges are, essentially, gigantic free radicals,
which would be impossible to realize in a true graphene sys-
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tem. This argument ignores, however, the fact that such gi-
gantic free radicals can be chemically passivated with other
chemical species, notably hydrogen. It is found ab initio that
the long-range magnetic order is robust, even under passiva-
tion of the edges,24 confirming early predictions.41

In small graphene structures �triangles and hexagons�,
magnetism has been thoroughly investigated42 both using ab
initio and Hartree-Fock methods, but generally for small dot
sizes. The interplay between transport and magnetism has
also been addressed,43 as well as magnetism induced by
vacancies44,45 �which can be seen as a three site zigzag edge�.

Another topic of experimental research, that has recently
seen a considerable upsurge, is the study of interplay be-
tween the mechanical properties of graphene and its elec-
tronic structure. The motivation for these studies is the pos-
sibility of tailoring the transport properties of graphene by
means of externally induced strain.46 Naturally related is the
question of how can the above-mentioned magnetic proper-
ties of graphene ribbons and dots be modified by external
stress. In a previous work,47 some of the present authors
showed that the electronic spectrum of graphene can be
strongly modified by external stress. In particular, stress
along the zigzag edges of the system might eventually lead
to the opening of a gap at large deformations. In addition to
studying the magnetic properties of quantum dots in equilib-
rium, here we will also address how their magnetization is
affected by external stress.

Our main findings can be summarized as follows. The
existence of magnetic ground states in graphene dots of nano
to mesoscopic sizes depends on their geometry and not only
on the existence of zigzag portions along their edges. Within
a Hartree-Fock framework, the existence �or not� of a mini-
mum on-site Coulomb repulsion, Uc, for the onset of mag-
netism depends critically on the dot geometry and symmetry.
When strain is applied, the nearest-neighbor hopping inte-
grals are naturally modified. This leads to a modification of
the local magnetic moments found in the ground state, in a
way which is much stronger than one would expect just by
calculating the isotropic renormalization of the critical Cou-
lomb repulsion U. Our results show that magnetism is en-
hanced under uniaxial strain and causes a reduction in Uc for
the dots which exhibit finite Uc. Moreover, we find that,
under strain, the local magnetic moments associated with
zigzag edges in rectangular dots can drift from the zigzag to
the armchair edges.

The paper is organized as follows: in Sec. II we introduce
our theoretical model and discuss the relevance of several
Coulomb terms in defining an effective Coulomb interaction
U. A discussion of the appropriate value of U for graphene
ensues. In Sec. III we study the magnetization of different
types of square and hexagonal graphene dots. In Sec. IV the
role of strain on the magnetization of graphene dots is con-
sidered. Our main results are discussed in Sec. V.

II. MODEL

Our study of magnetism in graphene quantum dots and
antidots relies on the Hubbard model with on-site interaction,
an approach used by other authors in the study of graphene

ribbons.38 Since dots have no translation symmetry, the prob-
lem is solved in real space. To that end, we need to setup the
Hamiltonian in a matrix form, which requires a convenient
algorithm to build such a matrix for the different types of
dots. In what follows we describe the model, together with
the physically relevant values of the on-site Coulomb inter-
action.

The study of magnetism in condensed-matter physics is
traditionally, and frequently, based on the Hubbard model,
which can be written as

H = H0 + HU, �1�

H0 = − t �
r,�,�=↑,↓

a�
†�r�b��r + �� + H.c., �2�

HU = U�
r

a↑
†�r�a↑�r�a↓

†�r�a↓�r� + U�
r

b↑
†�r�b↑�r�b↓

†�r�b↓�r� .

�3�

For graphene the hopping integral is t�2.7 eV �used as the
energy unit in this work�, U is the on-site Coulomb repulsion
energy, and a�

†�r��b�
†�r�� is the electronic creation operator at

site A �site B� of the unit cell r in the honeycomb lattice �see
Fig. 1�.

The Coulomb term is treated at the mean-field level27,30

by making the replacement of the quartic interaction by

HU → HU
MF = U�

r,�
a�

†�r�a��r��a−�
† �r�a−��r�� + U�

r,�
b�

†�r�b��r�

��b−�
† �r�b−��r�� , �4�

such that, when �= ↑ ,↓, we have −�= ↓ ,↑. After this trans-
formation, the quantum problem becomes bilinear in the
electronic operators and can be solved by diagonalization of
two matrices of dimension D�D, where D is the total num-
ber of lattice sites in the dot. The electronic density has to be
determined self-consistently and the mean-field equations
read48

na,��r� = �a�
†�r�a��r�� , �5�

FIG. 1. �Color online� Illustration of the honeycomb lattice with
the A and B sublattices, the lattice vectors �i �i=1,2 ,3�, the primi-
tive vectors a and b, and the hoppings ti�i=1,2 ,3� used in Sec. IV.
The abscissas are along the zigzag edge �horizontally in the figure�,
and a0 is the equilibrium carbon-carbon distance.
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nb,��r� = �b�
†�r�b��r�� . �6�

Here na,��r� and nb,��r� are the mean electronic densities of
spin � at the A and B sites of the unit cell r, respectively. The
wave function of the system corresponding to an energy E�,�
is labeled by the quantum number �, having the explicit form

	��,�� = �
r

A�,��r�	a,r� + B�,��r�	b,r� , �7�

where 	a ,r� and 	b ,r� are lattice-position basis states. The
mean-field Eqs. �5� and �6� are determined as function of the
A�,��r� and B�,��r� coefficients, defined in the wave function
Eq. �7�, according to

na,��r� = �
�

	A�,��r�	2f�E�,�� , �8�

nb,��r� = �
�

	B�,��r�	2f�E�,�� , �9�

where f�x�= �1+e��x−���−1, � is the chemical potential, and
�=1 / �kBT� with T the temperature. The problem has to be
solved numerically. We start with a trial solution for na,��r�
and nb,��r�; then the Hamiltonian is diagonalized and new
values for na,��r� and nb,��r� are computed; the procedure is
iterated a number of times until convergence is reached.

As mentioned, the conventional treatment of magnetism
in graphite and graphene at the Hartree-Fock level includes
only the effect of the on-site Coulomb interaction U. We now
discuss the importance of more general interactions.49 We
first note that, at the mean-field level, a nearest-neighbor
Coulomb interaction does not contribute to the existence of a
ferromagnetic phase in the case of a system with transla-
tional invariance and a single orbital per unit cell.50 If in
graphene we consider a Coulomb term of the form

HV = V �
r,�,�,��

a�
†�r�a��r�b��

† �r + ��b���r + �� , �10�

it remains true that such interaction will not contribute �at the
Hartree-Fock level� to the existence of a magnetic ground
state in the thermodynamic limit. The situation is different,
though, in a system without translational invariance, since
the spin density in neighboring carbon atoms is not necessar-
ily equal. This is of special relevance near the edges of the
system.

The mean-field Hamiltonian has the form

HV → HV
MF = V�

r,�
a�

†�r�a��r�n̄b�r� + �a ↔ b� , �11�

where �a↔b� in Eq. �11� is a shorthand notation for a term
with the same form as the first, but with the role of the a and
b operators interchanged, and

n̄b�r� = �
�,��

�b��
† �r + ��b���r + ��� �12�

is the average density at the B neighbor carbon atoms of a
given A atom at position r. The terms HU and HV are direct
Coulomb interactions. An exchange term can also be in-
cluded in the Hamiltonian, having the form

HJ =
J

2�
r,�

Sa�r� · Sb�r + �� �13�

with Sa�r��Sb�r�� the electronic spin operator of an electron
at site r of the sublattice A�B�. In this case, the mean-field
Hamiltonian is

HJ → HJ
MF =

J

2�
r,�

a�
†�r�a��r�	̄b�r� + �a ↔ b� �14�

with

	̄b�r� = �
�,��

���b��
† �r + ��b���r + ��� , �15�

where 	b�r� is the average spin density at the B neighbor of
a given A atom at position r, and � takes the values 
1 when
used as a multiplicative factor.

We shall assume that the leading overall effect of these
three interactions can be captured by a renormalized Hub-
bard interaction, U, in the mean-field calculations. Thus the
value of U should reflect this effective interaction rather than
the bare on-site Coulomb repulsion in graphene.

We now proceed to study the ground state of dots and
their magnetization as a function of U. A natural question
immediately arises: what value of effective U should one
take to be consistent with the magnitude of the real Coulomb
interactions in the material. For the benzene molecule U was
seen to be as large as 16 eV.51 In a recent study of magnetism
in disordered graphene and irradiated graphite,38 the value of
U was considered to be in the interval 3–3.5 eV, based on the
value accepted for trans-polyacetylene, a one-dimensional
bipartite sp2 carbon system �although this value of U for
trans-polyacetylene has been subject to controversy52�. Other
two recent studies42,53 took U=2 and 3.85 eV values that
reproduce the LDA gap in graphene ribbons24 and the high-
est occupied molecular orbital-lowest unoccupied molecular
orbital gap in small graphene-based structures. We shall con-
sider below U=2 and 3.5 eV as reference values in our cal-
culations.

III. �(N) AND MAGNETIZATION

The results for the magnetization of graphene dots depend
on the type of edges present. Generally speaking, one ex-
pects to see larger magnetization close to zigzag edges,
where the existence of localized states satisfies a spatial
Stoner criterion for finite values of U.54 The existence of
such type of states is shown to be related to lattices with an
odd number of sites.55 For models with sublattice symmetry,
as in the case of graphene, the number of zero-energy modes
is determined from the difference 	NA−NB	, where NA and NB
are the number of sites in sublattices A and B,
respectively.55,56

In our calculations we use relatively small dots. This
choice is justified because there are almost no visible finite-
size effects, as we explicitly show below by studying dots of
different sizes. Additionally, our choice is also justified from
an experimental point of view, since it recently became pos-
sible to cleave graphene crystalites down to one-dimensional
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chains by irradiation inside a transmission electron micro-
scope �see Fig. 2 of Ref. 57�. With such new experimental
methods, tailoring dots of any possible size and shape seem
now quite within reach.

It is useful for latter use to introduce the quantity ��N�, as
the energy interval between the highest hole state and the
first-particle one for the system without interactions �U=0�

��N� = Elowest
particle − Ehighest

hole , �16�

where N is the total number of atoms in the dot. We consider
two types of dots with square and hexagonal shapes and also
the case of a dot with two nonconnected regions �some times
referred to as an antidot�.

We start with the study of hexagonal dots. There are hex-
agonal dots with different symmetries and different types of
edges: �1� dots with D6 symmetry, having only armchair
edges �see Fig. 2�a���; �2� dots with D6 symmetry, having
armchair and zigzag edges �see Fig. 3�b���; and �3� dots with
D3 symmetry, having armchair and zigzag edges �see Fig.
2�c���.

The first type of dot defined above shows that it is pos-
sible to have dots without zigzag edges, no matter how large
they are, and therefore the physics associated with zigzag
edges should not be present. This type of D6 dot, when very

large, is almost equivalent to the bulk system, having the full
symmetry of the honeycomb lattice and therefore showing a
second-order phase transition at a �mean-field� critical Hub-
bard interaction, Uc, given by

Uc � 2.23t �17�

as shown in Fig. 4 �HEX2 type�. The same holds true for the
D6 HEX1 type of hexagons but with a smaller value of Uc
�smaller than 2�. The dependence of the maximum value of
magnetization as a function of U for the two D6 hexagons is
plotted in Fig. 4. There we see that the critical U is close to

FIG. 2. �Color online� Types of hexagonal and square dots stud-
ied in this work: �a� hexagon with D6 symmetry and no zigzag
edges �termed HEX2 in the figures below�; �b� hexagon with D6

symmetry and zigzag edges �termed HEX1 in the figures below�;
�c� hexagon with D3 symmetry with zigzag edges; �d� an antidot
with the external and internal boundaries made of D6 symmetry
with no zigzag edges; �e� square where the vertices are of zigzag
type �termed SQR1�; and �f� square where the vertices are of arm-
chair type �termed SQR2�. The size of the figures is characterized
by the number L of carbon atom horizontal lines �zigzag type of
lines�, for example, in panel �a� one has L=14 and in panels �e� and
�f� one has in both cases L=10.

FIG. 3. �Color online� Illustration of the local magnetization for
dots of the same type illustrated in Fig. 2, but with a much larger
number of atoms, thus avoiding finite-size effects. Upright triangles
refer to positive magnetization and the down ones to negative val-
ues. The open triangles refer to the points where the magnetization
has it maximum value. In panel �a� we have a HEX2 hexagon with
U=2.3; for �b� and �c� hexagons U=2. In panel �d� we show an
antidot, where the external boundary is from a EHX2 hexagon and
the internal one is from a HEX1 hexagon. Panels �e� and �f� are of
type SQR1 and SQR2, respectively.

FIG. 4. �Color online� Variation in the magnetization as function
of U for squares and hexagons of different types. The vertical
dashed lines refer to the values of U used in Refs. 38 and 53 �see
text in Sec. II for a discussion about these choices�.
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that given by Eq. �17�, without any noticeable variation with
the size, L, of the hexagon. In Fig. 4 the reference values for
U discussed at the end of Sec. II are represented as vertical
dashed lines. Clearly, the magnetic transition is well above
those reference values for U, meaning that this type of dots,
if experimentally fabricated, should exhibit no magnetic or-
der.

We note that the two D6 hexagons have finite ��N� val-
ues, which vary as a power law with N as shown in Fig. 5.
For the HEX1 and EXH2 types of hexagons we numerically
extract

��N� � 1.71N−0.53, �18�

��N� � 1.75N−0.48, �19�

respectively. The exponent in the above power laws is essen-
tially equal to 1

2 and, therefore, reflects the finite-size quan-
tization of the electronic spectrum. For square dots, on the
other hand, we find that ��N� vanishes much rapidly as N
increases, reflecting the formation of edge states at nearly
zero energy: for small systems, the edge states from opposite
sides of the square dot hybridize, and the otherwise zero
energy states for the semi-infinite system split in energy. As
the width of the dot increases the hybridization is strongly
suppressed and zero-energy levels develop.

The finiteness of ��N� for the hexagons correlates with
the finite value of Uc seen in Fig. 4. On the other hand, the
value Uc�2.23t, previously obtained in the literature,28 was
determined using the fact that the density of states of bulk
graphene is proportional to the absolute value of the energy
relatively to the Dirac point, being zero for a half-filled sys-
tem. These two results—for D6 hexagonal clusters and the
bulk system—means that the value of Uc in Eq. �17� is not
exclusively determined by the vanishing nature of the den-
sity of states at the Dirac point of bulk graphene. On the
other hand, the two D6 hexagons show different values of Uc,

which can only be interpreted as a boundary effect, deter-
mined by the different nature of their edges. It is worth no-
ticing that the hexagons of type HEX1, having zigzag termi-
nations �defining a figure with D6 symmetry�, do not develop
zero-energy states, leading, therefore, to the finiteness of Uc.
The hexagonal dot of D3 symmetry shows a behavior for
��N� identical to that found for the squares and, as a conse-
quence, there is no finite value of Uc: the system is magnetic
for any arbitrarily small value of U.

The mean-field values of Uc determined for the D6 hexa-
gons will be modified by quantum fluctuations. The effect of
quantum fluctuations amounts in general to shifting the
Hartree-Fock Uc to higher values.28,29,31 In the case of small
graphene-based nanodots, such as bisanthrene26 �C28H14�,
the Hubbard Coulomb interaction may be larger than that
assumed for macroscopic sp2 carbon systems. This hypoth-
esis is based on the value U
16 eV computed for
benzene.51 Given this value and our current results, there is a
real possibility of having magnetic ground states in small
hexagonal systems with D6 symmetry.

In what concerns the relation between magnetism and
edge structure, we see that dots with D3 and square symme-
try have zigzag edges, and this leads to finite magnetization
for any finite U. Magnetization is maximal at, and close to,
the zigzag edges and fades rapidly as one progresses toward
the bulk of the dot. It is worth noticing that for HEX1-type
hexagonal dots there are six external zigzag boundaries, but
its spectrum does not present zero-energy eigenvalues. In
Fig. 3 we present particular cases of the spatial distribution
of magnetization in the different dots considered in Fig. 2.
For the hexagons of type HEX2 the magnetization is homo-
geneous over the boundary and, as soon as U�Uc, it devel-
ops from the boundary of the hexagon toward the bulk. For
HEX1 hexagons the maximum of magnetization develops at
the zigzag vertices, but again only for U�Uc. In the case of
the hexagon with D3 symmetry the development of the mag-
netization follows the pattern of that found for HEX1 dots,
but it is finite for any finite U value. The antidot case �panel
�d� of Fig. 3� can be considered a simple case of a disordered
system, since all symmetries are broken. In this case the
magnetization develops preferentially at the internal edges
connected to the bulk of the system with formation of a
shadow region at bottom left of the antidot where no mag-
netization is seen �for that particular value of U�. This be-
havior can be understood since the internal boundary plays,
in the antidot, the same role as the external boundary of the
equivalent dot. It is worth noticing that the antidot, being
made of HEX1 and HEX2 hexagons, has a critical Hubbard
interaction, which is controlled by the Uc value of the HEX1
hexagon.

In Fig. 4 we depict the dependence of the maximum of
magnetization �mmax� with U. We see that for the square dots
of both types considered in Fig. 2 the magnetization is finite
down to arbitrarily small values of U. This can be correlated
with the correspondingly small values of ��N�, shown if Fig.
5, and the behavior of the DOS at the Fermi level. As to the
hexagonal dots �see Fig. 4�, we also see that the existence of
a finite ��N� is associated with the existence of a finite Uc. In
other words, some geometries have finite density of states at
E=0, �0��0, whereas others do not. In the case �0�=0

FIG. 5. �Color online� Variation in quantity ��N� with the num-
ber of atoms for square and hexagonal dots. From this figure alone
we can understand that the spectrum of hexagons of types HEX1
and HEX2 behaves exactly in the same way, not showing the de-
velopment of zero-energy edge states, a consequence of the D6

symmetry alone.
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and as N→� the behavior of the system is essentially that of
the bulk case up to finite-size corrections. On the other case,
with �0��0 for finite N, the magnetic behavior is different
and there is finite magnetization for any value of U. We then
understand the result obtained by Sorella and Tosatti28 as the
limiting case of N→� with �0�=0 for any finite N.

A relevant quantity to compute is the energy difference
between the paramagnetic and ferromagnetic ground states,
defined as

�E = Epara − Eferro, �20�

where Epara and Eferro are the ground state energies of the
paramagnetic and ferromagnetic ground states. The value of
�E is intimately related to the �mean-field� temperature at
which such a magnetic ground state could be observed. In
Fig. 6 the value of �E is given in Kelvin for both hexagons
and squares. As discussed previously, these squares magne-
tize for any finite U and therefore we could, in principle,
observe magnetism with the values of U expected for
graphene �dashed lines in Fig. 6�. The mean-field critical
temperature is relatively high, between 10 and 30 K, in the
interval for the lower and higher expected U in graphene, but
not comparable to the room-temperature magnetism ob-
served in graphite.39

IV. MAGNETISM AND STRAIN

Strain in graphene is now an active topic of experimental
research. It was shown that some amount of strain can be
induced either by deposition of oxide capping layers8 or by
mechanical methods.58 The amount of strain can be deter-
mined by monitoring the blueshift8 or redshift58 of the G and
2D Raman peaks of graphene. This method is a straightfor-
ward extension of related studies used in graphite
nanofibers.59 Strain has also obvious consequences on the
electronic and heat transport, producing metal-
semiconductor transitions, as in carbon nanotubes,60 or trans-
port anisotropy in graphene.10 These effects are due to
changes in the band structure of the materials as a conse-

quence of the modification of interatomic distances, which in
turn implies a change in the electronic-hopping parameters.
To our best knowledge, the first correct studies of strain ef-
fects on the band structure of graphene were undertaken in
Refs. 47 and 61.

For hexagonal systems the relation between stress, �ij,
and strain, uij�i , j=x ,y ,z�, reads59

�
uxx

uyy

uzz

uyz

uzx

uxy

� = �
S11 S12 S13 0 0 0

S12 S11 S13 0 0 0

S13 S13 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 2�S11 − S12�
��

�xx

�yy

�zz

�yz

�zx

�xy

� ,

�21�

where the elements Si,j �here i , j=1,2 ,3 ,4� are termed com-
pliance constants. For the case of graphene under uniaxial
tensile strain, the relation between stress and strain is

uxx = S11�xx, �22�

uyy = S12�xx, �23�

meaning that graphene behaves as an isotropic elastic me-
dium. We shall consider two cases of stress: applied along
the zigzag edges �ZZ� and applied along the armchair edges
�AC�. In these two cases, the absolute values of the next-
nearest-neighbor vectors �i change as47

	�1,3	 = 1 +
3

4
� −

1

4
�� , �24�

	�2	 = 1 − �� , �25�

for the ZZ case and

	�1,3	 = 1 +
1

4
� −

3

4
�� , �26�

	�2	 = 1 + � , �27�

for the AC case, where �=S11� is the amount of longitudinal
strain and �=−S12 /S11 is the Poisson ratio. The two cases
correspond to two different physical situations, which can be
understood in the case of extreme deformations using a
simple picture: in the ZZ case the system tends to dimerize,
since 	�1,3	 lengthen and 	�2	 shortens; in the AC case, all
three distances lengthen, but 	�2	 lengthens more, which can
be construed as a tendency for the formation of quasi-one-
dimensional structures. A real-space picture representing
these two situations can be seen in Fig. 7.

In Fig. 8 we present results regarding the effect of strain
on the magnetization of the dots. For the purpose of illustra-
tion we consider dots of smaller size, but the results of Fig. 4
guarantee that we should have negligible finite-size effects.
The global effect of tensile stress on the edge magnetization
of the dot is an increase in its magnitude, independently of
whether we consider stress along ZZ or AC directions. In
quantitative terms, the magnetization increase is more pro-

FIG. 6. �Color online� Variation in �E with the Coulomb inter-
action U / t for hexagons of the type HEX1 and squares of the type
SQR1.
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nounced when stress is applied in the ZZ configuration than
on the AC one. In experimental terms, the prediction is that
magnetism in graphene-based systems should be easier to
detect when the material in under stress.

Figure 9 shows the explicit variation in Uc with strain for
the hexagons of type HEX, which have a finite Uc. In the
same figure, on the bottom row, the effect of � on the maxi-
mum of the magnetization, mmax, is also represented for
squares of the type SQR2 �which have no critical U�. We
observe an increase in mmax as � increases. The dependence
of mmax on � is not the same for the ZZ and AC cases at the

same U value. Stress along the zigzag edge is most effective
at producing an enhancement of mmax. This behavior can be
understood on the basis of the qualitative physical picture
described in Fig. 7: stress along zigzag edges tends to pro-
duce dimmers weakly coupled between them, which favors
the magnetic state at those tightly bound atoms.

For hexagons with a finite Uc, Fig. 8 shows that the over-
all effect of strain along both the ZZ and AC cases is to
reduce the value of Uc, which for large � obeys Uc� t. At
first sight this result may seem easy to understand: the value
of U cannot change with stress because it is a local �on-site�
property.62 The hopping, on the other hand, depends strongly
on the interatomic distance, and hence on the external stress.
Since the result for Uc in the bulk system, Eq. �17�, is bound
to the value of the �uniform� hopping t, a change in t pro-
duces a change in the absolute value of Uc. If we had an
uniform magnetic ground state �as would be the case for bulk
graphene without zigzag edges�, the effect of external stress
could be captured through the average hopping �t�, which
diminishes as � increases, causing a reduction in the critical
value of the Hubbard interaction, Uc���
��t���� �� should
be around 2.23, as per Eq. �17��. Since we measure energies
in units of the bare t, the above can be written as

Uc���
t


 �
�t����

t
�28�

and thus Uc��� / t would be expected to follow the variation
in �t� with strain.

To verify to which extent such effects contribute to the
results shown in Fig. 8 we have calculated the critical Hub-
bard interaction expected for a uniform graphene system, as
a function of magnitude and direction of strain. Within the
Hartree-Fock framework Uc is given by28

1

Uc
=

1

N
�

k

1

	E�k�	
, �29�

where N is the total number of carbon atoms and E�k� is the
noninteracting electron dispersion. In the presence of strain

FIG. 7. �Color online� Representation of the effect of stress on
the length of the nearest-neighbors carbon atoms. On the left we
depict the ZZ case and on the right the AC one. For the ZZ case,
the stress � induces an increase in the hopping associated with the
vertical bond, due to the Poisson effect. The hoppings associated
with bonds 1 and 3 are reduced, and the system tends to dimerize at
large deformations. For tension along AC, � is oriented along bond
2. In this case all hoppings are reduced, but the one associated with
bond 2 decreases more than the other two, leading to a set of quasi-
one-dimensional chains. The quantitative change in the hoppings
upon stress was studied quantitatively using ab initio methods in
Ref. 61.

FIG. 8. �Color online� Variation in the magnetization as function
of the Hubbard interaction U for different strain values �. The top
panels refer to stress along the ZZ edge and the other to stress
along the AC edge. The Poisson ratio used was that of a personal
electronic transfer substrate ���0.3�, considered in study of the
Raman redshift of the G and 2D peaks of graphene �Ref. 58�. The
vertical dashed lines refer to the values of U used in Refs. 38 and 53
�see text in Sec. II for a discussion about these choices�.

FIG. 9. Variation in the critical value, Uc with the amount of
strain for the cases ZZ �top left� and AC �top right�. In both cases
we used HEX2-type hexagons with L=8. In the bottom row we
have the dependence of the maximum value of magnetization, mmax,
on the amount of strain, using U / t=2, and for the cases ZZ �down
left� and AC �down right�. In both cases we used SQR2-type
squares with L=10.
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we will have a generalized dispersion given by

E�k� = 
 	t2 + t3e−ik·a1 + t1e−ik·a2	 �30�

reflecting that the nearest-neighbor hoppings, ti, can all be
different in general.47 Using the parameterization introduced
in Ref. 47, we have extracted Uc as a function of strain
magnitude, �, and orientation with respect to the honeycomb
lattice, � ��=0 for ZZ and �=� /2 for AC�.

Figures 10�a� and 10�b� show how the three hopping in-
tegrals t1, t2, and t3 vary under uniaxial strain along the ZZ
and AC directions, respectively. Also included in those pan-
els, are the respective average values of the hopping, defined
as the arithmetic mean of the three nearest-neighbor hopping
integrals. It can be seen that the average hopping, �t�, is
essentially the same for both ZZ and AC. This is shown
more clearly in Fig. 10�c�, where we plot �t� as a function of
strain, and for different strain directions: there is no sensible
modification of �t� as the angle � defining the tension direc-
tion is changed. Notwithstanding, the tendency is for �t� to
decrease, as we naturally expect. The critical values of Uc
under strain are shown in Fig. 10�d�, where we plot both
Uc / t0 �that reflects the absolute variation in the critical cou-
pling� and Uc / �t� �which reflects the statement in Eq. �28��.
On the one hand, the fact that Uc / �t� is roughly constant up
to deformations of 20% tallies with the assumption in Eq.
�28� using a constant parameter �. However, even though the
decrease in Uc / t0 with strain shown in Fig. 10�d� is qualita-
tively in agreement with the discussion above regarding the
behavior of Uc for the dots in Fig. 9, the curves in Fig. 10�d�
do not decrease as rapidly. Hence, the above argument that
the critical U should follow the variation in �t� �Eq. �28�� is
not quantitatively accurate.

The reason for this lies in the very nature of the magnetic
ground states of the quantum dots, which are not uniform.
Consequently, the above argument fails in quantitative accu-

racy, because it assumes uniformity. Similarly to what hap-
pens in nanoribbons, the magnetization in the dots studied
here has a strong space dependence, being highly enhanced
near certain edges. This is a direct consequence of the char-
acter of the electron states around the Fermi energy, which
tend to be localized near the boundaries. Moreover, as the
dots are deformed by the applied strain, this space distribu-
tion is affected as well. In Fig. 11 we show the spatial evo-
lution of the magnetization at the edges of the dots of type
SQR2 as � increases. We have chosen representative values
of � such that the effect is clearly evident. Stress along either
the armchair edge �panels �b� and �c� in Fig. 11� or the zigzag
edge �panels �d�, �e�, and �f� in Fig. 11� shows the same
trend: a tendency for magnetization transfer from the zigzag
to the armchair edge of the dot. The effect is more pro-
nounced for tension along the ZZ as shown in Figs.
11�d�–11�f�. In all cases, the value of the magnetization in-
creases, as can be seen in the lower panels of Fig. 9. From
the picture described in Fig. 7, the behavior of the magneti-
zation in the ZZ case can be understood as follows: large
stress along zigzag edges tends to produce quasidimmers,
weakly connected to each other; the dimers at the armchair
edges are only coupled to the bulk of the dot by two weak
bonds, and this favors the stabilization of a magnetic state.

V. DISCUSSION

In this paper we have studied magnetism in graphene
quantum dots of particular geometries with and without zig-
zag edges. Similarly to what has been proposed in the con-
text of graphene nanoribbons, the magnetism displayed by
these systems may be used in spin filters. We have not stud-
ied the effect of leads on the ferromagnetic order, but the
broadening of the quantum dot levels due to coupling to the
leads �a system with a continuous spectrum�, will have an
impact on the magnetic properties of the dot. In the case of a

FIG. 10. �Color online� The top row shows the variation in the
nearest-neighbor hoppings t1,2,3 and the average hopping, �t� under
uniaxial strain with strain applied along the ZZ �left� and AC di-
rections �right�. The bottom left panel consists of the variation in �t�
with strain for different orientations of the uniaxial deformation. In
the last panel on the bottom right we present Uc / t0 and Uc / �t� for
the two representative directions.

FIG. 11. �Color online� Spatial variation in the magnetization as
function of strain. �a� �=0; �b� and �c� corresponds to �
=0.14,0.22 with stress along the armchair edge; and �d�, �e�, and �f�
corresponds to �=0.10,0.14,0.22 with stress along the zigzag edge.
In both cases there is an increase in the magnetization along the
armchair edge as � increases. The upright triangles represent posi-
tive magnetization and the down ones represent negative values.
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ferromagnetic nanoparticle, a theoretical description has al-
ready been developed,63 but no such model exists for
graphene to our best knowledge. This study will be the sub-
ject of a forthcoming publication. Another aspect we have
not considered in our study is the effect of the substrate on
the magnetic properties of the dot. Since graphene dots are
meant to be used as nanoelectronic devices, they will always
interact with some substrate, which can reduce thermal fluc-
tuations and favor magnetism at finite temperatures.

It is worth stressing again the main reason for magnetism
at the edges of some graphene systems. Thinking about
graphene ribbons or dots as a bulk system, that is by looking
at the total density of states, leads immediately to the objec-
tion that magnetism should not be present for any finite U
value. However, by looking at our results for magnetism in
these systems it is clear that this is a property of the edges.
Therefore the relevant quantity is not the bulk density of
states, but rather the local density of states, and this latter
quantity, near the edges, does become very large at the Fermi
energy �E=0�, thus leading to very small critical U values
�eventually indistinguishable from zero�. This shows that the
total density of states is not a relevant quantity for this prob-
lem.

Ab initio calculations have shown that very small
benzene-based systems, such as bisanthrene, have ferromag-
netic ground states, and therefore we expect that magnetism
will also be present in small quantum dots of graphene, as
hinted by our Hartree-Fock results. We have also seen how
stress might affect the magnetic ground states. When applied
along the zigzag edges, stress seems to promote a spatial
rearrangement, the magnetization distribution throughout the
dot. This, combined with the transport response of these sys-
tems, may allow mechanical control over spin-polarized cur-
rents flowing inside the dot. On the other hand, the fact that
stress along zigzag edges leads to the formation of dimers
weakly coupled between them, suggests that the system may
prefer to form a sort of spin liquid. Investigations of whether
the ground state will be truly magnetic or a spin liquid are
required.

In our calculations including strain, we have resorted to
linear elasticity to describe the lattice deformations, as re-
ported in Ref. 47. We now wish to justify its validity, since it
is an important point and deserves a careful explanation. We
do not expect linear theory to remain valid for deformations
as high as the 20% used in some of our calculations above.
However, since we are interested solely in the influence of
strain in the electronic structure and not on the detailed elas-
tic response, the relevant detail is not the validity of the
linear theory itself, but rather how a certain amount of strain
changes the hoping values. In our calculations we combined
linear theory with the widespread parameterization of the
dependence of the Vpp� on the carbon-carbon distance

Vpp��l� = te−3.37�l−1�, �31�

where l is the length of the stretched �or compressed� carbon-
carbon distance, in units of that undeformed distance. From
the above equation what matters really is the quantity

�l−1�, which is determined by the amount of strain, and its
prefactor in the argument of the exponential. Since there
might be legitimate doubts with respect to the use of linear
elasticity for determining l in the above equation, this issue
was addressed in another publication.61 There, first-
principles calculations were used to study the effect of strain
on the nearest-neighbor hopping values. By their nature,
first-principles calculations make no use of any elastic ap-
proximation, being valid for arbitrary deformations, in prin-
ciple. It was found that the combined use of linear theory and
of the above formula for Vpp� gives accurate results for the
hoping values. Moreover, as discussed in Ref. 47 subsequent
ab initio calculations have shown good quantitative agree-
ment with the use of linear elasticity combined with the pa-
rameterization in Eq. �31� �for example, the merging of the
two Dirac points for tension along the zigzag direction is
predicted to occur at the same values of strain, around 25%,
both ab initio and within tight binding with linear elasticity�.
Therefore our approach to the calculation of the hopping
variation upon strain and its consequences for the � band
structure is accurately captured by the linear theory.

The impact of edge roughness on the magnetic properties
of the dots also deserves some considerations. In graphene
nanostructures prepared with current fabrication techniques,
the edges are invariably rough and disordered. This can
hinder the stability of long-range magnetic order. However
much is still unknown with respect to the nature of edge
reconstruction in real graphene nanostructures. It is expected
that the chemical bonds at the edges be under �surface� ten-
sion, which leads to edge reconstruction as a means of re-
lieving elastic energy. This reconstruction could lead to self-
organization of the edge, reducing the roughness and
allowing for long-range magnetic order. Moreover, the recent
advances in tailoring, at the atomic level, subnanostructures
by transmission electron microscope,57 might allow unprec-
edented control over the edge profiles. Having such control
will certainly add greater tangibility to the prospect of tailor-
ing magnetic states in graphene nanostructures.

Finally, we point out that the experimental observation of
ferromagnetism arising from grain boundaries with zigzag
edges in graphite strongly suggests that dimensionality is not
a paramount issue in carbon-based systems, as long as some
mechanism for quenching the thermal and quantum fluctua-
tions is present. Besides the anisotropy in the interaction be-
tween the local magnetic moments,39 the fact that graphene
is generally deposited onto a substrate could provide an extra
quenching mechanism, in the same way that it suppresses the
fluctuation-induced crumpling of the two-dimensional
graphene membrane. The mechanical stability of graphene
and the robustness of its magnetic phases can be seen as a
vivid example of fluctuation quenching.
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